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Shear flow instabilities in rotating systems 
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(Received 2 1 November 1967) 

A theoretical description is given for infinitesimal non-axisymmetric distur- 
bances of a shear flow caused by differential rotation. It is assumed that the 
deviations from the state of rigid rotation are small corresponding to the case 
of small Rossby number. The shear flow becomes unstable at a finite critical 
value of the Rossby number, at  which the inertial forces overcome the friction 
in the Ekman boundary layers and the constraint imposed by the variation in 
depth of the container. The governing equation is closely related to the Rayleigh 
stability equation in the theory of hydrodynamic stability of plane parallel flow. 
Experimental observations by R. Hide show reasonable agreement with the 
theoretical predictions. 

1. Introduction 
The dynamics of a homogeneous fluid in a rotating system are in many respects 

simpler than in a corresponding non-rotating system. Boundary-layer theory 
has a wider range of application in a rotating system, and viscous dissipation can 
be taken into account more easily. This fact holds in particular for the theory of 
hydrodynamic stability, and one of the motivations for this paper is to show that 
the extended literature on the inviscid theory of stability has a direct application 
to  flows in rotating systems. In  non-rotating systems dissipative effects usually 
necessitate a more complicated description. 

We shall restrict the stability analysis to steady flow, which is axisymmetric 
with respect to the axis of rotation, and assume that the vorticity of the flow is 
small compared with the rotation rate of the system; i.e. we consider cases wit,h 
small Rossby number. According to the Taylor-Proudman theorem, axisym- 
metric steady flow of small Rossby number assumes the form of a differential 
rotation. 

Shear flow occurring in the form of differential rotation is a frequent pheno- 
menon in rotating fluid systems. An example is the cylindrical shear layers 
formed at the junction between two fluid bodies rotating rigidly about the same 
axis but at different rates. Free stationary shear layers of this nature have been 
described mathematically by Stewartson (1957), who studied the motion of a 
fluid between two infinite parallel rotating plates when a circular part of one or 
both plates is rotating a t  a different rate. In general, a differential rotation with 
arbitrary dependence on the distances from the axis can be produced in an axi- 
symmetric system when the bounding surfaces are rotating differentially. 
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Often stationary shear flow is induced by forced oscillations of the fluid. The 
non-linear terms in the equation of motion lead to a rectified component which 
has the form of a differential rotation in an axisymmetric system. An example 
for this type of shear flow is the flow in a precessing spherical shell which has been 
studied by Malkus (1968) and Busse (1968). 

In general, the laminar azimuthal shear flow becomes unstable when its 
amplitude increases sufficiently. Two basic mechanisms for instability can be 
distinguished. When the angular velocity 0 with respect to an inertial system 
decreases with distance s from the axis, the Rayleigh criterion di3s2/ds > 0 with 
respect to axisymmetric disturbances (Rayleigh 1920) can be violated. The 
Taylor vortices in the case of circular Couette flow are an example for this kind 
of instability. A different kind of instability occurs as a wave propagating in the 
azimuthal direction and corresponds to the instability of parallel shear flow in a 
non-rotating system. We shall restrict the discussion to the latter type of in- 
stability since the Rayleigh criterion is satisfied for sufficiently small Rossby 
numbers. 

To formulate the mathematical problem we consider a rotating system with 
an incompressible homogeneous fluid contained between rigid boundaries. 
Given the constant rotation rate Q, the kinematic viscosity I ) ,  and a characteristic 
length L of this system in the direction of the axis of rotation, a dimensionless 
number E = v/L2Q, the Ekman number, can be formed. We use L as the length 
scale and Q-l as the scale for time in order to obtain dimensionless variables. 
We further assume that the Navier-Stokes equations of motion describing the 
system have a steady solution of the form 

U = k x rEf(s). (1.1) 

U is the velocity vector, k is the unit vector parallel to the axis of rotation, and r 
is the position vector. s is equal to I k x rl. The amplitude of the flow (1.1) is 
given by the Rossby number E ,  since we assume that the otherwise unspecified 
function f is of the order one. A steady solution of the form (1.1) can be expected 
in the limit of vanishing E when the additional advective flow balancing the 
viscous diffusion become negligible. In  many situations the solution (1.1) is also 
modified in Ekman boundary layers close to the rigid boundaries. We shall neglect 
this modification since cases are feasible in which the boundary velocities are 
chosen in such a way that the modification of (1.1) in the Ekman layer becomes 
arbitrarily small. We expect, however, as we shall discuss in 9 6, that the influence 
of the modification can be neglected even when its amplitude is of the order 6.  

The mathematical problem is to determine, as a function of the other parameters 
of the system, the ciritical value of E at which the solution (1.1) becomes unstable 
with respect to disturbances of infinitesimal amplitudes. We expect a strong in- 
fluence of the change in depth of the fluid in the direction of the axis of rotation, 
since it is known from the general analysis by Greenspan (1965) of free oscilla- 
tions in rotating containers that systems with constant depth in the k-direction 
are exceptional. The instability in systems of this kind is discussed in $2. The 
analysis is extended to more general cases in $3.  In  the limit when the steady 
flow can be approximated by plane parallel shear flow, the analysis leads to 
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well-known equations. For this reason an explicit solution of the problem is 
given in $ 5  for two special cases only, which exhibit the effects of the circular 
geometry. The case of strongly varying depth requires a more involved analysis. 
In  $ 4  the stability problem is formulated, and a special solution is derived to 
demonstrate some characteristic features of this case. The relevance of the 
theory to the experimental situation is considered in the final $0 6 and 7. 

2. Rotating systems with constant depth 

velocity field (1.1) have the following dimensionless form : 
The Navier-Stokes equations for an infinitesimal disturbance q of the given 

(2.1) 
EV2q-Vp-2kxq  = U . V q + q . V U + , q ,  

v .q  = 0. 

Using polar co-ordinates (s, g5, z )  with respect to the k-axis, we assume that the 
normal unit vector of the bounding surfaces is given by n = (ns(s) ,  0, n,(s)). In  
this section we further assume that the fluid has a constant depth, implying that 
the outward-pointing normal vectors nT at the top and nB at the bottom surface 
have identical dependence on s but opposite signs. The boundary condition on 

q = 0. (2.2) these boundaries is 

In addition to the top and bottom surfaces, for which n, is non-vanishing, side- 
walls parallel to k can be admitted. On the side-walls only the normal component 
of q is required to vanish. The condition that the remaining components of q 
have to vanish can be shown in most cases to have negligible influence. 

Using the assumption that J E  and E are small parameters, we solve equation 
(2.1) by applying the boundary-layer method as described, for example, in 
Greenspan’s (1965) paper. The velocity field is separated into two parts which 
both are expanded in powers of J E ,  

qi describes the velocity field throughout the interior, while is non-vanishing 
only in a thin layer close to the boundary. 

The linear equations (2.1) allow a time dependence of the form exp(-iswt}. 
The phase velocity will be of the order of the Rossby number because of Howard’s 
semicircle theorem which has been extended to circular flow by Eckart (1963). 
Since we are interested in the point of marginal stability, we have to determine 
the functional relation between E and .jE for which w becomes real. We anticipate 
that E will be of the order J E  in this case, corresponding to a balance between the 
viscous dissipation in the boundary layer and the forcing term due to the shear 
flow. Neglecting terms of the order B or ,/E in (2.1), we arrive at the following 
equations for q,: 

which imply the Taylor-Proudman theorem 

q=qi+T]i=qo+JEq,+ ...+Qo+JET]i1. (2.3) 

2kxqo+Vp0  = 0, V.qo = 0, (2.4) 

k.Vqo = 0. (2.5) 

n.q, = 0 (2.6) 

The general solution of (2.4) which satisfies the inviscid part 

37-2 
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of the boundary condition (2.2) is given by 

In order to satisfy the equation of continuity, we assume that the dependence of 
nT on s is small compared with that of Po. po is an undetermined function of s, q5 
which vanishes at  the side-walls s = si, so where si, so may have the values zero 
and infinity. In order to satisfy the complete boundary condition (2.2) the 
boundary-layer problem has to be solved. By introducing the co-ordinate 5 in 
the direction normal to the boundary, 

c =  -E- +n.(r-rs), 

with rs denoting the position vector a t  the boundary, the zeroth-order boundary- 
layer equation can be written 

The general solution of this equation with the boundary condition q0 + q, = 0 
is of interest in our case only in so far as it leads to an influx into the boundary 
due to the equation of continuity (Greenspan 1965) 

To balance this influx the equation for q,, 

2k x q, + Vpl = - E-*[U. Vqo + go. VU - iewq,] (2.10) 

has to be solved subject to the boundary condition 

n.q,+n.illlc=O = 0. (2.11) 

The solvability condition for the inhomogeneous problem (2.10), (2.11) is crucial 
in the determination of the unknown pressure field po. Let 

1 
q$ = -T nT x Vp$ (2.12) 

2% 

be a solution of (2.4) satisfying the same boundary conditions as go. By multiply- 
ing (2.10) with q$, integrating over the interior region, and using V.q, = 0 ,  we 
obtain 

{n. q,}p$dC = - E-* q$ . [U . Vq, + qo . VU - icwqo]dP s 
nT.V x [U.Vqo+qo.VU-iewq,] 

as a necessary and sufficient condition for the solvability of (2.10). For p$ = po 
the relation (2.13) can be interpreted as the energy balance for go. Since the 
integration over the z co-ordinate contributes the factor 1 and because the rela- 
tion (2.13) has to hold for arbitrary function p$ of s, #, the content of the wavy 
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brackets on both sides of (2.13) has to be equal. This fact provides a differential 
equation for p o  which we write in the form 

since Po = x(s )  exp {i(m$ - W )  (2.15) 

can be assumed without losing generality. The constant c is defined by 

(2.16) 
w + 2ie-lE+&,T)-S c = -  

m 

Equation (2.14) resembles the equation for the instability of inviscid shear 
flow in a non-rotating system, since the influence of rotation appears only in the 
form of the dissipative term proportional to JE .  In  fact, in the limit when 

(so - Si)/(SO + Si) < 1, (2.17) 

or when f differs from a constant only over a corresponding small interval, the 
effects of the circular geometry become negligible and (2.14) can be rewritten 
in the form 

(2.18) 

with 
2m 

( si + so) nT ' 
a =  

which is identical with the well-known Rayleigh stability equation for plane 
parallel flow. A recent review of the extended literature concerned with (2.18) 
has been given by Drazin & Howard (1966). Solutions are known for various 
types of shear flow profiles f and can be applied to the present problem. The 
maximum of the imaginary part of mc as a function of m determines the critical 
value cC of the amplitude E at the point of marginal stability for a given profile f 
and a given value of E.  In  order to demonstrate the influence of the circular 
geometry, solutions of (2.14) will be derived in $5 in two simple cases. 

3. Extension of the analysis to more general cases 
In the case when the depth of the fluid is varying slightly in the sense that 

InT+nBI < 1 (3.1) 

at corresponding points of top and bottom boundaries (at least in so far as the 
region where the instability occurs), the analysis of the preceding section can be 
applied with a small modification. Assuming that q,, is given in the form 

1 
(nT - nB) x Vpo, 

2(n,T - n,") 9 0  = 

we obtain 
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as a boundary condition for q, in place of (2.10). The additional term in (3.2) 
leads to a modified equation for 2: 

2 n,T 

) (--q - ( ; f t + f j  ’ = 0. (3.3) 
4m2 

S-- 
s d s  ds sz(nF-n,”)z ’+; n,T n,” 

In  the limit (2.17) this equation becomes formally identical with the Rayleigh 
stability equation for parallel shear flow in the P-plane approximation. The 
P-plane approximation has been introduced in the studies of the dynamics of the 
atmosphere and the oceans to take into account the variation of the Coriolis 
force. It is well known that slight variations in depth cause a stretching of vortex 
lines similar to the effect of varying Coriolis force. The analysis of (3.3) in the 
case of plane parallel flow by Kuo (1949) and Howard & Drazin (1964) shows that 
the additional term in (3.3) in general has a stabilizing effect. 

The analysis of the preceding section can also be extended to include the effect 
due to viscous dissipation in the interior. Since it has been shown that the 
boundary analysis holds for cases when ~ ’ ( s )  becomes of the order Epx with 
0 > p > - (see, for example, Stewartson, 1957), the dissipative term in the 
interior can be taken into account in the equation for q,. The solvability condition 

in place of (2.14) in this case. (3.4) corresponds to the Our-Sommerfeld equation 
in the limit (2.17). 

4. Instabilities in the case of strongly varying depth 
For simplicity we shall assume in this section that top and bottom surface are 

symmetric with respect to the plane x = 0, i.e. n,” = - nf, n,” = n:. This special 
case exhibits the characteristic influence of a strongly varying depth, and the 
analysis of the general case follows in direct analogy. In  the preceding section 
we have shown that the variation in depth can be taken into account as a per- 
turbation when 7 = nT/nF is of the order E or 2/E, respectively. In  the case of 
plane parallel flow corresponding to the limit (2.17) of (3.3), Kuo (1949) has 
shown that a necessary condition for instability is that there exists a point s1 
with 

This condition indicates that the onset of instability occurs at  a finite Rossby 
number E even in the limit of vanishing Ekman number. Although the criterion 
(4.1) has been derived only for small 7, it  suggests that in the case when 7 becomes 
of the order 1 either the critical Rossby number will become of the order 1, or the 
characteristic scale of the profilefhas to be sufficiently small (i.e. of the order J E )  

to allow instability. Since we assume that 8 is a small parameter we shall restrict 
our attention to the latter case. 

Negleding the effects due to the circular geometry, we introduce as new co- 

€S,f”(S,) = 7. (4.1) 

ordinates 
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We note that the x, y co-ordinates are based on ,,I€ L as length scale while the 
z co-ordinate is still based on L. In  order to derive convenient equations from the 
basic equations (2.1) we represent t,he velocity field by 

q = V x (V x kO)+V x k+. 

A representation of this form holds for arbitrary non-divergent velocity fields. 
Neglecting the viscous effects we derive the following two equations for 8 and 

We have used the definition w(y) = - sJ(s )  and assumed that the x- and t-depen- 
dence of 8 and +is described by exp ( iy(x  - a t ) } .  The assumption that the charac- 
teristic scale of the problem in the directions perpendicular to  the k-axis is of 
the order Je smaller than in the k-direction has allowed us to neglect terms of the 
order Jc smaller than those retained in (4.2). From (4.2) a single equation for Ir/- 
can be derived: 

Similarly, the boundary condition for + follows from the condition that the 
normal component of the velocity vanishes at the boundary, 

In  general the problem defined by (4.3) and (4.4) does not allow separation of 
variables and thus prohibits simple solutions. In order to exhibit the influence 
of strongly varying depth in a special case, we choose 

W(Y) = [S(Y)l+. (4.5) 

Although this profile is rather singular it reproduces correctly the dispersion 
relation c(y) for arbitrary smooth profiles with 

W ( W )  = w( -a) = 0,  and the same momentum flux, [" w2(y)dy = 1, 
J - W  

as long as y-l is large compared with the characteristic width of the 'jet '. This has 
been shown by Drazin & Howard (1962, 1966), who also derived the relations 

(4.6) 

which +has to satisfy in this case and which are not altered by the addition of the 
last term on the left-hand side of (4.3). Since the scale of the profile (4.5) is 
infinitesimal compared with the scale we have chosen, marginally stable distur- 
bances cannot be expected. Thus the scope of the following discussion can only 
be to show by comparison with vanishing or smalI values of 7 the influence 
exerted by finite values of 7. 

a 
lim + = lim +, c2 (lim - +-- lim 
Y+O + y+O- v+o+ aY y-0- aY 
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The profile (4.5) allows us to solve the problem (4.3) and (4.4) by 

where the complex number h is determined by the relation 

htg(+h) = - Qqy". (4.8) 

1' 1.0 
5- 

0.2 I I I l l 1 1 1  
002 0.1 1 *o 

+ C r y  ci 

FIGURE 1. The curves describe the real and the imaginary parts c,, c, of c(y)  for the values 
7 = -0.1 (I), 7 = - 1 (11). 7 = - 10 (111). The dashed lines are obtained when the 
approximation htggh z &i2 is used in equation (4.8). In  the case (I) the dashed lines 
coincide with the exact results. 

The square root in (4.7) has to be chosen so that its real part is positive. Besides 
(4.7), solutions which are antisymmetric in z are possible. We shall restrict our 
attention to the lowest symmetric mode because the growth rates for the higher 
modes are smaller. The second relation in (4.6), 

together with (4.8) leads to two complex conjugate roots c(y) which represent 
the dispersion relation. The real and the imaginary parts are plotted in figure 1 
for different values of 7. For positive values of 7 the real part of c(y) is negative. 
The results show that, for values of y somewhat larger than one, the influence of 
the top and bottom boundaries vanishes, and the solution becomes 

c = *i(&y)+, (4.10) 
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as in the case of a free shear flow profile (4.5) governed by the Rayleigh stability 
equation. In  the case when either q2 < 1 or y < 7-2, the approximation 

htg(4h) % (4.11) 

holds. This approximation corresponds to the approximation used in the deriva- 
tion of (3.3) since the perturbation approach (3.2) can be used not only when 
(3.1) holds, but also when the #-dependence of q, is small compared with the 
s-dependence. The corresponding dispersion relation has also been plotted in 
figure 1, and the comparison with the exact results shows that the approximation 
(4.1 I )  can be used to a larger extent than might be expected from its derivation. 
This is true in particular for the imaginary part of c, which suggests that (3.3) in 
the limit of vanishing E provides a good approximation for the determination 
of the critical Rossby number even in the ease when the condition (3.1) is not 
satisfied. Thus the mechanism of the constraint of the changing depth can be 
described generally as the stretching and compressing of vortex tubes. 

5. Examples for the instability of circular shear flow 
In  order to obtain simple analytical solutions of (2.14) we assume that f is 

piecewise constant or proportional to r2. We neglect the effects of side-walls and 
take nz = 1. Cases with n: < 1 can be derived from the case n: = 1 by replacing 
m with m(n,T)-l according to (2.14). 

A profile which is representative for a shear layer is given by 

\ 1  for s2 6 s. 

Since (3/s) f ‘  + f ” vanishes in all three regions, (2.15) can be solved easily: 

( 5 . 2 )  i 
Alsm for s 6 sl, 

i B 3 r m  for sg 6 s. 

x = A z ~ m + B 2 s - m  for s1 < s < s2, 

The unknown coefficients in (5.2) are determined by requirements that the 
normal velocity or x, respectively, and the expression 

obtained by integration of (2.14) are continuous at  s = sly s2. The four homo- 
geneous equations for the four known coefficients are solvable when c satisfies 
the characteristic equation 

(mc- 1)2 = (m- 1 ) 2 + -  _ _ _  
1 - 7  4y 1-7 m ) ;  (5.3) 

where y is defined by y = (.sl/sz)z. The case m = 1 is exceptional, since the right- 
hand side of (5.3) vanishes all for y. Hence c is real, and the profile (5.1) is always 
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stable with respect to the disturbance with m = 1. For m > 1 the point of mar- 
ginal stability is determined by the minimum of the right-hand side of (5.3) 
provided that this minimum is negative. In  the limit when y approaches 1, the 
right-hand side has its minimum when 

Stable 

+l-y 

FIGURE 2. Stability diagram for the shear layer (5.1). The curves refer to instabilities 
with different azimuthal wave-number. The stationary flow corresponding to a certain y 
becomes unstable with respect to that instability which has the highest value of ,/E/ec. 

The corresponding value of the critical Rossby number is 

€c = - 2JE (1 - y )  [I + 0-186( 1 - y )  + . . .]. 
0.805 

Relation (5.4) shows that the wavelength of the most unstable disturbance is of 
the same order as the width of the shear layer. For lower values of m which are 
not covered by the asymptotic formula (5 .5 ) ,  the critical Rossby number is 
given in figure 2 .  No instability can occur for y < corresponding to a ratio 2 
of s2/s1. In the case of inclined boundaries, however, with nz < 1, the mode with 
m = 1 may become unstable for values of y less than 3. 

Another case in which the stability problem can be solved easily is given by 

(0 for s 6 sl, 
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The solution for x in the form (5 .2)  leads to  a characteristic equation for c 

(mc - +m)2 = i ( m  - 2)2 + __ (5.7) 

The comparisonwith (5.3) shows that theright-handsideof (5.7) becomesidentical 
with the right-hand side of (5.3) when multiplied by a factor 4 and when m is 
replaced by (m+ 1). Hence, the shear flow of the form (5.6) is stable with respect 
to disturbances with m = 1,2,  and figure 2 applies in this case with 4ec and 
fm + 1) in place of ec and m. Again, in the case of inclined boundaries, modes with 
m = 1 , 2  may become unstable when n,T is sufficiently small. 

6. Comparison with experimental observations 
Critical Rossby numbers for the instability of a shear layer in a rotating system 

have been measured recently by Hide (1967). His experiment consists of a 
cylindrical container of height L and radius so filled with water and rotating 
about its axis with the angular velocity Q. A coaxial circular disk of radius s1 
which is part of the top plate of the cylinder is rotating at the rate O( 1 + 4e). 
The experiment corresponds approximately to the case considered in Stewart- 
son's (1957) paper which we have mentioned in the introduction. The experiment 
is not ideal for the purpose of testing the validity of theory described in 0 2 .  The 
leading term of Stewartson's solution 

1-exp{-(4/E)~(sO-s)}+ ... for s < so, 

- 1 +  exp{-(4/E)t(s-so)}+ ... for s > so 
f={ 

gives a thickness of the order E* for the shear layer. Hence the viscous dissipation 
in the interior becomes of the same order as the dissipative term induced by the 
Ekman boundary layer. Numerical calculations, however, by Esch (1957) for 
a profile similar to (6.1) indicate that the interior dissipation amounts only to  a 
few percent of the boundary layer dissipation for the observed wave-numbers. 
Even the inviscid Rayleigh equation (2.18) does not allow a simple analytical 
solution for the profile (6.1) and for this reason we assume that the characteristic 
function ~ ( a )  of (2.18) can be represented by the characteristic functions of 
profiles similar to (6.1) as, for example, 

The profile (6.3) has been normalized in such a way that the growth rates ac(ct) 
of (6.2) and (6.3) agree approximately (see Drazin & Howard 1962). The profile 
(6.3) is particularly suitable for our purpose since it corresponds to the limit 
y-+ 1 of the profile (5.1). This allows us to include the effects due to the circular 
geometry-which are important in Hide's experimentby assuming that 
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c(m) for the shear layer depends similarly on the thickness parameter y as c(m) 
for the profile (5.1). Due to the assumptions involved we cannot expect more than 
qualitative agreement between theory and experimental observations. The 
observed instabilities appear as waves travelling along the shear layer. They are 
very similar to those shown in the paper by Hide & Titman (1967) and agree 

I I I I I I I I l l  I I I I I I l l  

lo4 
+ E-1 

lo5 

FIGURE 3. Experimental data by R. Hide in comparison with theoretical predictions. The 
observation of the asisymmetric regime is indicated by 0; 3 waves (m = 3) by A ;  
4 waves (m = 4) by +. 

qualitatively with the theoretical description, a t  least in the case when the inner 
disk is rotating faster than the cylinder. Measured critical Rossby numbers and 
theoretical predictions are plotted in figure 3. The theoretical curves differ 
slightly from those corresponding to figure 2 because the constraint of the side- 
walls has been taken into account. As power law fitting the data, Hide gives 

C, = 32.4 EO.77, 

which is comparable with the asymptotic theoretical law derived from (5.5) 

B, = 15*6E%. 

The reasonable agreement suggests that a quantitative agreement might be 
expected in cases more suitable for the comparison between experiment and 
theory. 

In  many experimental situations, as for example in Hide’s experiment, the 
amplitude of the Ekman boundary-layer flow is of the order of the Rossby 
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number. It is known from the work of Faller (1963) and others that a t  critical 
Rossby numbers of the order J E  boundary-layer instabilities occur. Owing to 
there stricting influence of the rigid boundary, however, the Ekman-Reynolds 
number a/JE is of the order 50 and larger in some cases, For this reason and 
because the scale of instabilities caused by the shear in the Ekman layer is very 
different from the scale characteristic for the interior, it seems justified to separate 
the two mechanisms of instability. Hence, we expect that the theory described 
in the previous sections is applicable in cases when the modification of the 
velocity field (1.1) in the Ekman layer is of the order of the Rossby number. 

7. Conclusion 
The stability theory for inviscid plane parallel shear flow is one of the most 

intensively studied fields in fluid dynamics. Owing to viscous dissipation and be- 
cause of the fact that instabilities in the physical situation occur subcritically as 
disturbances of finite amplitude, there has been little comparison between theory 
and experiment. Both obstacles can be eliminated when the theory is applied to 
shear flow occurring in an appropriate rotating system of constant depth. The 
dissipative effects which occur mainly in the Ekman boundary layer can be 
taken into account without changing the form of the inviscid stability equation. 
That subcritical instabilities of finite amplitude do not occur in rotating systems 
of constant depth is suggested by the fact that the linear theory can predict 
adequately the critical Rossby number. A physical explanation for this fact is 
that three-dimensional motions usually associated with stabilities of finite 
amplitude are prohibited according to the Taylor-Proudman theorem. 

The author is indebted to Professor Raymond Hide, who kindly communicated 
the results of his experiment before their publication. He also wishes to  thank 
Professors Harvey Greenspan, Louis Howard and Willem Malkus for valuable 
discussions. The work was supported by the Atmospheric Sciences Section, 
National Science Foundation, under Grant GA-849. 
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